Sequential Experimental Design for Transductive Linear Bandits

Tanner Fiez, Lalit Jain, Kevin Jamieson, Lillian Ratliff
University of Washington

Transductive Linear Bandits

 Input: $\mathcal{X}, \mathcal{Z} \in \mathbb{R}^{d}$, confidence $\delta \in(0,1)$ for $t=1,2, \cdots$1. Learner chooses $x_{t} \in \mathcal{X} \quad \epsilon_{t} \sim \mathcal{N}(0,1)$
2. Nature reveals $y_{t}=\left\langle\theta_{*}, x_{t}\right\rangle+\epsilon_{t}$

Learner defined by selection rule $x_{t} \in \mathcal{X}$, stopping rule at which time the learner recommends $\hat{z} \in \mathcal{Z}$.

An algorithm is δ-correct if $\mathbb{P}\left(\hat{z} \neq \operatorname{argmax}_{z \in \mathcal{Z}}\left\langle\theta_{*}, z\right\rangle\right) \geq 1-\delta$

Contributions:

1. Lower bounds for the Transductive Linear Bandit Problem.
2. RAGE Algorithm with matching sample complexity (up to logarithmic factors)
3. First matching upper and lower bounds for Pure Exploration for Linear Bandits.

Examples

Example 1: Content Recommendation.

- $\mathcal{X}=\mathcal{Z} \subset \mathbb{R}^{d}$, corresponds to a set of songs
- Unknown $\theta_{*} \in \mathbb{R}^{d}$ encapsulates preferences of a user.
- How do we play songs to learn the users favorite songs?
- When $\mathcal{X}=\mathcal{Z}$, recover pure exploration for linear bandits.

Example 2: Drug Discovery

- $\mathcal{Z} \subset \mathcal{X} \subset \mathbb{R}^{d}$, corresponds to sets of compounds.
- θ_{*} feature vector of an antigen, $\left\langle\theta_{*}, x\right\rangle$, is effect of compound x on the antigen.
- Testing potentially unsafe compounds \mathcal{X} that we would not use on patients may help us more quickly learn $\operatorname{argmax}_{z \in \mathcal{Z}} \theta_{*}^{\top} z$

Theoretical Result Summary

$$
\rho^{*}=\min _{\lambda \in \Delta_{\mathcal{X}}} \max _{z \in \mathcal{Z} \backslash z_{*}} \frac{\left(z^{*}-z\right)^{\top}\left(\sum_{x \in \mathcal{X}} \lambda_{x} x x^{\top}\right)^{-1}\left(z^{*}-z\right)}{\left|\left\langle\theta_{*}, z^{*}-z\right\rangle\right|^{2}}
$$

Adaptive lower bound (Extends Soare 2015)

$$
\rho^{\star} \log (1 / \delta)
$$

Adaptive upper bound (Fiez, Jain, Jamieson, Ratliff 2019) $\Delta=\min _{z \neq z^{*}}\left\langle\theta_{*}, z^{*}-z\right\rangle$

$$
\rho^{*}\left[\log (1 / \delta)+\log (|\mathcal{Z}|)+\log \left(\log \left(\Delta^{-1}\right)\right)\right] \log (1 / \Delta)
$$

Non-adaptive (single round of experimental design):

$$
\frac{d}{\Delta^{2}}[\log (1 / \delta)+\log (|\mathcal{X}|)]
$$

RAGE: Randomized Adaptive Gap Elimination

Input: $\mathcal{X}, \mathcal{Z} \subset \mathbb{R}^{d}$ set $\mathcal{Z}_{1}=\mathcal{Z}$
for $\ell=1,2, \ldots$

1. Perform experimental design on \mathcal{Z}_{ℓ}

$$
\lambda_{\ell}=\operatorname{argmin}_{\lambda \in \Delta_{\mathcal{X}}} \max _{z, z^{\prime} \in \mathcal{Z}_{\ell}}\left(z^{\prime}-z\right)^{\top}\left(\sum_{x \in \mathcal{X}} \lambda_{x} x x^{\top}\right)^{-1}\left(z^{\prime}-z\right)
$$

2. Compute $\widehat{\theta}_{\ell}$ by sampling from λ_{ℓ} enough times to ensure that

$$
\left\langle\theta_{*}, z^{*}-z\right\rangle>2^{-\ell} \Longrightarrow\left\langle\widehat{\theta}_{\ell}, z^{*}-z\right\rangle>2^{-(\ell+1)}
$$

3. Update set

$$
\mathcal{Z}_{\ell+1}=\mathcal{Z}_{\ell} \backslash\left\{z \in \mathcal{Z}_{\ell}: \exists z^{\prime} \in \mathcal{Z}_{\ell},\left\langle\widehat{\theta}_{\ell}, z^{\prime}-z\right\rangle>2^{-(\ell+1)}\right\}
$$

Experiments

Previous Work on Pure Exploration for Linear Bandits

Marta Soare, Alessandro Lazaric, and Rémi Munos. Best-arm identification in linear bandits. In Advances in Neural Information Processing Systems, pages 828-836, 2014.

Zohar S Karnin. Verification based solution for structured mab problems. In Advances in Neural Information Processing Systems, pages 145-153, 2016.

Chao Tao, Saúl Blanco, and Yuan Zhou. Best arm identification in linear bandits with linear dimension dependency. In International Conference on Machine Learning, pages 4884-4893, 2018.

Liyuan Xu, Junya Honda, and Masashi Sugiyama. A fully adaptive algorithm for pure exploration in linear bandits. In International Conference on Artificial Intelligence and Statistics, pages 843-851, 2018.
Our result is uniformly tighter and first to match problem-dependent lower bound.

