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Transductive Linear Bandits

Input: X, Z ¢ R¢, confidence 6 € (0,1)
fort =1,2,---

1. Learner chooses z; € X e: ~ N(0,1)

2. Nature reveals y; = (0., x¢) + €

Learner defined by selection rule x; € &', stopping rule at which time the learner recom-
mends z € Z.

An algorithm is d-correct if P(2 # argmax, . z (0, 2)) > 1 — 0

Contributions:

1. Lower bounds for the Transductive Linear Bandit Problem.

2. RAGE Algorithm with matching sample complexity (up to logarithmic factors)
3. First matching upper and lower bounds for Pure Exploration for Linear Bandits.



Examples

Example 1: Content Recommendation.

o X = 2Z C RY corresponds to a set of songs

e Unknown 0, € R? encapsulates preferences of a user.

e How do we play songs to learn the users favorite songs?

e When A = Z, recover pure exploration for linear bandits.

Example 2: Drug Discovery

e ZC X C R corresponds to sets of compounds.
e 0, feature vector of an antigen, (0., x), is effect of compound x on the antigen.

e Testing potentially unsafe compounds A" that we would not use on patients may help
us more quickly learn argmax, . =6, 2



Theoretical Result Summary
L =) (Cpexhaae) " =2)
P = Imin max

ANEAx zEZ\ 2, |<9>|<7 Z* — Z>‘2
. _J

Adaptive lower bound (Extends Soare 2015)

p” log(1/0)

Adaptive upper bound (Fiez, Jain, Jamieson, Ratliff 2019) A = rr;inw*, 2" — 2)

p*[log(1/6) + log(|Z[) + log(log(A™"))] log(1/A)
Non-adaptive (single round of experimental design):

d

- Wh these different?
AQ [10g(1/5) -+ log(‘Xm When 22:1I;3eling its bleneficial to

sample along the differences.



RAGE: Randomized Adaptive Gap Elimination

Input: ¥, Z Cc Rset 21 = Z
for / =1.2,...
1. Perform experimental design on Z;

—1
A¢ = argminyca ., max (2’ — z) (Z)\ X ) (2 — 2)

z,z'e€Zy
reX

2. Compute @ by sampling from )\, enough times to
ensure that

<9>|<, A Z> > 2_£ — <é\£7z* _ Z> > 2—(£+1)
3. Update set
Zp41= 20\ {z € Z,:32 € 25,0y, — 2) > 2—<e+1>}




Sample Complexity

Experiments
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